DOE Bioenergy Technologies Office (BETO) 2019 Project Peer Review

Algae Production CO₂ Absorber with Immobilized Carbonic Anhydrase (TABB)

March 7, 2019

David Hazlebeck
Global Algae Innovations

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Goal Statement

The goals are to demonstrate

80% CO₂ capture efficiency can be attained in a high efficiency absorber 90% carbon utilization efficiency in an outdoor raceway Integrated operation of the absorber with an algae raceway

Relevance to bioenergy industry

- Low-cost CO₂ supply is necessary to achieve algal biofuel cost metrics
- High CO₂ capture and utilization efficiency are necessary to achieve biofuel cost, life-cycle, and production potential metrics
- This project will improve the efficiency of a proven system for utilizing power plant flue gas to supply CO₂ for large-scale open raceway cultivation

Quad Chart Overview

Timeline

7/2016 – 7/2019 99% Complete

Budget

	Pre 2017	2017	2018	2019 +
DOE	444	525	18	11
Cost Share	111	132	4	3
Partners		22% 3%		

Barriers

- Aft-B. Sustainable Algae Production
- Aft-H. Overall Integration and Scale-Up
- Aft-J. Resource Recapture and Recycle

MYPP milestones addressed:

- OBy 2017, model the sustainable supply of 1 million metric ton cultivated algal biomass
- OBy 2022, model the sustainable supply of 20 million metric ton cultivated algal biomass.

Objective

Utilize carbonic anhydrase and/or alternative absorber designs to increase CO_2 capture and utilization efficiency

End of Project Goals

Integrated cultivation and capture with

- 80% capture efficiency in single absorber
- 90% utilization efficiency

1 - Project Overview History

Power Plant Flue Gas CO₂ Supply

All CO₂ for growth from power plant flue gas

- 24 hour per day CO₂ recovery
- Power plant off-gas returned to stack after CO₂ recovery

1 - Project Overview Goals

Objective	Start of Project	Current Status	Project Goal
Single pass carbon capture efficiency	10%	83%	80%
Carbon Utilization Efficiency	60%	95%	90%
Integrated operation with high efficiency absorber	No	Yes	Yes
Cost of CO ₂ capture & delivery (\$/mt CO ₂)	\$47	\$21	\$21

2 – Approach (Management)

- Small team, weekly project meetings
- Milestone driven, completed well ahead of schedule

Area	Target	Schedule (Month)	Completion (Month)
	70%	9	4
Utilization Efficiency	80%	13	6
Lineichey	90%	16	10
Absorber test system	Design	4	4
	Fab & Shakedown	10	7
Gyotom	Operate w/catalyst	13	8
	80% neat solutions	16	8
Capture	70% integrated	19	9
Efficiency	80% integrated	22	9
	80%, 10 cycles	30	10
Managament	Risk Plan	3	3
Management	Scale-up analyses	36	13

2 - Approach (Technical)

Top Challenges

- Complexity of abiotic and biotic variation
- Carbonic anhydrase efficacy and lifetime in integrated operation with open raceways

Key Attributes of CO₂ Supply Options

System Attribute	Global Algae Innovations	Bubble Flue Gas	Carbon Capture
Avoid ground level release	Yes	No	Yes
Simple distribution/controls	Yes	No	No
Low pressure drop	Yes	No	No
24 hour capture	Yes	No	Yes
Low cost capture	Yes	No	No

Key Reactions Hydration is the Limiting Step

- 1) $CO_2(g) \leftrightarrow CO_2(aq)$
 - 2) $CO_2(aq) + H_2O \leftrightarrow H_2CO_3$ (Limiting)
 - 3) $CO_2(aq) + OH^- \leftrightarrow HCO_3^-$ (Limiting)
- 4) $H_2CO_3 \leftrightarrow H^+ + HCO_3^-$
- 5) $H^+ + CO_3^{2-} \leftrightarrow HCO_3^{-1}$

Utilize carbonic anhydrase to accelerate rate of hydration

3 - Technical Progress

Carbonate/bicarbonate system characterization

 Data and empirical correlation for carbonate/bicarbonate ratio as function temperature, pH, and conductivity measurements

Carbon Utilization Efficiency

- 95% average utilization efficiency in outdoor raceways
- 99% average utilization efficiency when growth rate was 15-25 g/m²d

Carbon Capture Efficiency

- 83% capture efficiency in a single pass column
- Mass-transfer data collected for scale-up
- Scale-up analyses show that 80-90% capture efficiency is reasonable for commercial-scale and cost is ~\$13/mt for capture of CO₂ and ~\$8/mt for storage and distribution to the raceways
- No change in efficiency during integrated operation

Single absorber capture efficiency results

Mass transfer is improved by packing and/or catalysis

Mass Transfer Summary

catalyzed and uncatalyzed CO₂ absorption

CO₂ Absorption Efficiency is improved with packing height and/or flue gas % CO₂

Packing Height vs % CO₂ Absorption

TABB Projections for Absorption Costs vs Farm Acreage

Capital/Operating Cost for CO₂ Absorption - vs- Farm Acreage

NETL Case 11 flue gas

Algae Farm Growth Area - acres

Summary of utilization testing

Test	Average utilization efficiency
pH 9.1 to 9.6	70%
pH 9.1 to 9.3	47%
pH 9.4 to 9.5	77%
pH 9.5 to 9.6	95%
pH 9.5 to 9.6, Productivity < 15 g/m ² d	80%
pH 9.5 to 9.6, Productivity 15 to 25 g/m ² d	99%
Automated control to 9.4	87%

Soap Lake and surrounding area microalgae isolates

Strain	Class	Species	pН
Sol 1273	Diatom	Nitzschia communis	9.92
Sol 0671	Diatom	Nitzschia communis	9.92
Sol 04124	Diatom	Nitzschia communis	9.94
Sol 0458	Chlorophyte	Chlorella vulgaris	10.02
Sol 02103	Chlorophyte	Nannochloris sp.	10.20
Sol 15101	Chlorophyte	Monoraphidium sp.	10.40
Sol 08107	Cyanobacteria	Undetermined – potential Synechocystis	10.07
Sol 05113	Cyanobacteria	Spirulina subsalsa	9.86
Sol 0982	Cyanobacteria	Synechocystis	9.92

4- Relevance

Supports the BETO mission to "Develop and demonstrate transformative and revolutionary bioenergy technologies for a sustainable nation."

Economical, scalable CO₂ capture required for large-scale commercialization

- Only practical, scalable, proven approach for open systems (operation on actual flue gas since 2014)
- Capture cost is lower than any other proposed method for flue gas
- Higher efficiency & lower costs directly support economical, sustainable algal biofuels and biofproducts

Goals aligned with BETO CO₂ capture and use:

- Higher capture efficiency
- Higher utilization efficiency
- Lower cost for CO₂ capture and use

Tech Transfer/marketability

- Strains for included in two BETO ECUAS projects
- Design incorporated into a BETO integrated biorefinery project
- Approach incorporated into 6 other BETO projects
- Strong interest from utilities

5 – Future Work

Submit final report

Transfer data and results

- Global Algae techno-economic model for all projects
- ECUAS project absorber design and CO₂ utilization methods
- Integrated biorefinery project scale-up of absorber and utilization
- Commercial projects design and costing
- Discussions with utilities on integration with their power plants

Transfer newly isolated strains

- ECUAS project 1 improved capture and utilization
- ECUAS project 2 direct air capture

Summary

1. Overview: Improves efficiency and reduces cost of proven, scalable CO₂

capture and utilization technology

2. Approach: Milestone driven, accelerated, focused effort

3. Technical Accomplishments/Progress are ahead of schedule:

- Increased CO₂ capture efficiency from 10% to 83%
- Increased CO₂ utilization efficiency from 60% to 95%
- Reduced CO₂ costs from \$47/mt to \$21/mt (~\$13 CO2, ~\$8 distribution)
- Demonstrated integrated operation with harvest and recycle of media
- Developed improved absorber design that results in lower costs and reasonable absorber heights for 80-90% capture efficiency
- Isolated nine high pH algal strains for future improvements

4. Relevance

- Improved the efficiency of the only proven flue gas CO₂ supply for open systems
- Strains available for improving efficiency or direct air capture of CO₂
- Design incorporated into an integrated biorefinery project and other DOE projects

